
M. J. Tannenbaum xT scaling CERN2003 1

xT scaling in Au+Au collisions
at √sNN=130 and 200 GeV for
π0 and charged hadrons from

PHENIX
M. J. Tannenbaum

Brookhaven National Laboratory
Upton, NY 11973 USA

nucl-ex/0308006 to appear in  PRC



M. J. Tannenbaum xT scaling CERN2003 2

RHIC: RHI+polarized p-p collider
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What is PHENIX? 

PHENIX = Pioneering High Energy 
Nuclear Interaction eXperiment
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What is PHENIX? 

PHENIX = Pioneering High Energy 
Nuclear Interaction eXperiment
A large, multi-purpose nuclear physics 
experiment at the Relativistic Heavy-Ion
Collider (RHIC)



M. J. Tannenbaum xT scaling CERN2003 4

A world-wide collaboration of ≈ 500 physicists from 51 Institutions
in 12 countries

The PHENIX collaboration
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A world-wide collaboration of ≈ 500 physicists from 51 Institutions
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The PHENIX detector
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The PHENIX detector

2 Central
Tracking arms
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The PHENIX detector

2 Muon arms
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The PHENIX detector

Beam-beam 
counters
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The PHENIX detector

Zero-degree 
calorimeters
(not seen)
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Detectors in the central
spectrometer arms
(pseudorapidity |η| < 0.35)

• Charged Particle Tracking:
– Drift-Chambers (DC)
– Pad-Chambers (PC)

• Identification of charged hadrons:
– Time-of-Flight (TOF) with

start signal from the Beam-
Beam-Counters (BBC)

• Electron Identification
– Ring Imaging Cherenkov

Detector (RICH)
∀ π0 via π0 → γγ:

– Lead scintillator calorimeter
(PbSc)

– Lead glass calorimeter (PbGl)
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Charged particle tracking: 
• Drift chamber  
• Pad chambers (MWPC)

Particle ID: 
• Time-of-flight (hadrons)
• Ring Imaging Cherenkov
(electrons)
• EMCal (γ, π0→γγ)
• Time Expansion Chamber

Acceptance:
|η| < 0.35  –  mid-rapidity
 ∆ϕ  = 2 × 90° 

Detectors in the central
spectrometer arms
(pseudorapidity |η| < 0.35)

• Charged Particle Tracking:
– Drift-Chambers (DC)
– Pad-Chambers (PC)

• Identification of charged hadrons:
– Time-of-Flight (TOF) with
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Detector (RICH)
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Example of a central Au+Au event at √snn =200 GeV
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RHIC Run Summary

Longitudinal350/nb200 GeV

Transverse17/nb200 GeV
P + P

2.7/nb200 GeVd + Au
RUN 3

2002-2003

Transverse150/nb200 GeVP + P

24/µb200 GeVAu + AuRUN 2
2001-2002

1.0/µb130 GeVAu + AuRUN 1
2000

PolarizationLuminosityEnergySpeciesRUN

Recorded on tape at PHENIX



M. J. Tannenbaum xT scaling CERN2003 9

Collision Centrality Determination
Spectators  

Participants
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Collision Centrality Determination

• Centrality selection : Sum of
Beam-Beam Counter
  (BBC, |η|=3~4) and energy of
Zero-degree calorimeter (ZDC)
• Extracted Ncoll and Npart based on
Glauber model.

Spectators  
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Ncharged and ET illustrate the excellent centrality definition

Number of tracks
0 100 200 300 400

Y
ie

ld

1

10

10
2

10
3

10
4

10
5

 0 200 400 600 800
 (GeV)=0η|η/dchdN

Define centrality classes: ZDC vs BBC

Extract N participants: Glauber model

b

Nch

ET
EZDC

QBBC

(EMC) (GeV)TE
0 50 100 150

Y
ie

ld

1

10

10
2

10
3

10
4

10
5

 0 200 400 600
 (GeV)=0η|η/dTdE

Nch
PHENIX preliminary PHENIX preliminary ET



M. J. Tannenbaum xT scaling CERN2003 11

Is the energy density high enough?
PRL87, 052301 (2001) 



M. J. Tannenbaum xT scaling CERN2003 11

Is the energy density high enough?
PRL87, 052301 (2001) 

πR2

2cτ0

Colliding system expands:









=

dy

dE

cR
T

Bj 2
2

11

0
2 τπ

ε

Energy ⊥ to
beam direction

per unit
velocity || to beam



M. J. Tannenbaum xT scaling CERN2003 11

Is the energy density high enough?
PRL87, 052301 (2001) 

πR2
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→ε ≥  4.6 GeV/fm3 (130 GeV Au+Au)

   5.5 GeV/fm3 (200 GeV Au+Au)

well above predicted transition!
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π0-Production in p+p at √s = 200 GeV
• π0 spectrum is absolutely normalized.
• Trigger-Counter is BBC which is biased

against counts in central spectrometer
• ƒπ0 ~75% of the total number of π0 from

inelastic events are also registered in BBC-
this is measured and corrected for.

• BBC-also used as luminosity counter
• absolutely calibrated with vanderMeer

scan: σBBC=21.8mb±9.6%
• intLums=NBBC/σBBC

• Physics:
– Good agreement with NLO pQCD

– Spectrum constrains D(Gluon→π)
fragmentation function

– Result needed as reference for
interpretation of Au+Au-Spectra

hep-ex/0304038

scales=pT

vary scales=2pT, pT, pT/2
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We use the Nuclear Modification Factor RAA for
pointlike scaling of an AA measurement from p-p

Compare A+A to p-p cross sections

Nuclear
Modification
Factor:

“Nominal effects”:
     RAA < 1 in regime of soft physics
     RAA = 1 at high-pT where hard
               scattering dominates
     RAA > 1 due to kT broadening (Cronin)
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What really Happens (RA > 1) for p+A
The anomalous nuclear enhancement a.k.a. the Cronin effect
due to multiple scattering of initial nucleons (or constituents)

•Known since 1975 that 
yields increase as   Aα,   α > 1

•J.W. Cronin et al.,
Phys. Rev. D11, 3105 (1975)
•D. Antreasyan et al.,
Phys. Rev. D19, 764 (1979)
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Cronin effect observed in d+Au at RHIC
√sNN=200 GeV

PHENIX preliminary π0 d+Au vs centrality for DNP2003
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This leads to our second PRL cover, our
first being the original Au+Au discovery
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Nuclear modification factor: Nuclear modification factor: √√ssNNNN  dependencedependence
for A+A collisionsfor A+A collisions

A.L.S.Angelis PLB 185, 213 (1987)
WA98, EPJ C 23, 225 (2002)
PHENIX, PRL 88 022301 (2002)
D.d'E. PHENIX Preliminary QM2002

CERN: Pb+Pb (√sNN ~ 17 GeV), α+α (√sNN ~31 GeV): all previous msmts-Cronin enhancement

Ncollision scaling 

Npart scaling
RAA ~  0.4
                          RAA~0.2

RAA ~  2.0

RAA ~1.5

RHIC Au+Au √sNN=130 and 200 GeV HUGE SUPPRESSION---Major Discovery 2001-2
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d+Au: Control Experiment proves the
Au+Au discovery

• The “Color Glass Condensate” model predicts the suppression in both Au+Au and d+Au (due to the
initial state effect).

• The d+Au experiment tells us that the observed hadron suppression at high pT central Au+A is a
final state effect.

• However the clever “Color Glass Condensate” people still have a few hoops for us to jump through.

Au+Au d+Au

= cold medium= hot and dense medium

Initial State
Effects Only

Initial + Final
State Effects
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RHIC Year-1 High-PT Hadrons

     Hadron spectra out to
     pT~4-5 GeV/c

      Nominally expect
production through
hard scattering, scale
spectra from N+N by
number of binary
collisions

      Peripheral reasonably
well reproduced; but
central significantly
below binary scaling
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RHIC Headline News… January 2002

PHENIX

First observation of large suppression of high pT hadron yields
‘‘Jet Quenching’’? ==  Quark Gluon Plasma?

PHENIX  PRL 88, 022301 (2002)
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RHIC Run 2: √s=200 GeV/c Au+Au collisions
now extend to higher PT

h+ + h-
Au-Au nucl-ex/0304022

PHENIX
Preliminary

Centrality
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Central Spectrum is suppressed---is this
due to a shift caused by energy loss

central
Ncoll = 975 ± 94
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RAA  : High PT Suppression to at least 10
GeV/c

 PRL 91 (2003) 072301

Binary scaling

Participant scaling

Factor 5

pp

AuAubinaryAuAu
AA Yield

NYield
R

/ 〉〈
=
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RAA  : High PT Suppression to at least 10
GeV/c

 PRL 91 (2003) 072301

Binary scaling

Participant scaling

Factor 5

pp

AuAubinaryAuAu
AA Yield

NYield
R

/ 〉〈
=

Large suppression in central
AuAu - close to participant
scaling at high PT

Peripheral AuAu - consistent
with Ncoll scaling (large
systematic error)
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Centrality Dependence of RAA

More central collisions

PRL 91 (2003) 072301

The suppression increases smoothly with centrality 
-  approximate Npart scaling.
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Centrality Dependence of RAA

More central collisions
D.Kharzeev, E.Levin, L.McLerran
hep-ph/0210332 

PRL 91 (2003) 072301

The suppression increases smoothly with centrality 
-  approximate Npart scaling.

Centrality dependence similar to
predictions of Color Glass Condensate
(AKA Gluon Saturation)
- Suggests Initial state effect!?!



M. J. Tannenbaum xT scaling CERN2003 27

Jet Quenching?

• pion suppression
reproduced by models with
parton energy loss

• other explanations not
ruled out
(at this stage)

without parton energy loss

with parton energy loss
Wang

Wang

Levai

Levai

Vitev

Au+Au→π0+X at √sNN = 200 GeV

Comparison with model calculations
with and without parton energy loss
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Can xT scaling reveal the nature of the
physics processes in jet suppression?



M. J. Tannenbaum xT scaling CERN2003 29

Suppression: Final State Effect?

• Hadronic absorption of fragments:
– Gallmeister, et al. PRC67,044905(2003)

– Fragments formed inside hadronic medium

• Parton recombination (up to moderate pT)
– Fries, Muller, Nonaka, Bass nucl-th/0301078

– Lin & Ko, PRL89,202302(2002)

• Energy loss of partons in dense matter
– Gyulassy, Wang, Vitev, Baier, Wiedemann…

1AuAuR
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Alternative: Initial Effects
• Gluon Saturation

– (color glass condensate: CGC)

     Wave function of low x gluons overlap; the self-coupling
gluons fuse, saturating the density of gluons in the initial
state.

      (gets Nch right!)
hep-ph/0212316; D. Kharzeev, E. Levin, M. Nardi

• Multiple elastic scatterings

    (Cronin effect)
Wang, Kopeliovich, Levai, Accardi

• Nuclear shadowing

r/γgg→g

D.Kharzeev et al., PLB 561 (2003) 93

1dAuRBroaden pT
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n(xT, √s) WORKS, n→5=4++

Figure 5: Left: CCOR invariant cross section vs xT=2pT/√s. Right: n(xT, √s) derived from the combinations
indicated. The systematic normalization at √s=30.6 has been added in quadrature. Note that the absolute scale
uncertainty cancels!
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Inclusive single hadron high pT spectra in p-p all √s
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pp spectra √s=23-1800 GeV
illustrate hard scattering phenomenology

π0

•  π0 measurement in same experiment allows us the study
of nuclear effect with less systematic uncertainties.

• Good agreement with NLO pQCD
• Reference for Au+Au spectra
• Give us Idea how to analyze whether

Au+Au data illustrate hard-
scattering by the same mechanism as
in p-p collisions

PHENIX (p+p)  hep-ex/0304038
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pp spectra √s=23-1800 GeV
illustrate hard scattering phenomenology

π0

•  π0 measurement in same experiment allows us the study
of nuclear effect with less systematic uncertainties.

• Good agreement with NLO pQCD
• Reference for Au+Au spectra
• Give us Idea how to analyze whether

Au+Au data illustrate hard-
scattering by the same mechanism as
in p-p collisions

PHENIX (p+p)  hep-ex/0304038

Hard

Scattering

p-p

Thermally-
shaped Soft
Production
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xT scaling in p-p collisions x~0.05-0.10
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As in previous talk scaling at higher xT is
improved with n=5.1
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PHENIX
Semi-

Inclusive π0
Au+Au

√sNN=130 and
200 GeV
vs pT

Peripheral 60 -- 80%

Central 0-10%
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Same data vs xT on log-log plot
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π0 and (h++h-)/2     xT scaled n=6.3

• Can calculate n(xT) point-by-point
by the ratio of  σinv at fixed xT for 2
different √s
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n(xT) point-by-point 200/130

• π0 xT scales in both peripheral and central Au+Au with same value of n=6.3 as in p-p

• (h+ + h-)/2 xT scales in peripheral same as p-p but difference between central and peripheral is significant
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Precision values of n(xT)

• ∆n=ncent - nperiph= 1.41±0.43 for (h+ + h-)/2     significant

• ∆n=ncent - nperiph= 0.09±0.47 for π0
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Conclusions
• xT scaling in peripheral Au+Au collisions at √sNN =130

and 200 GeV for both π0 and (h+ + h-)/2 with the same
value of n~6.3 as in p-p collisions in this xT √s range
indicates that hard-scattering is the dominant production
mechanism for high pT particles in Au+Au collisions.

• π0 production exhibits xT scaling with the same value of n~
6.3 in both central and peripheral Au+Au collisions

• This implies that the dynamics of suppressed high pT π0
production in Au+Au collisions is consistent with hard-
scattering according to pQCD with scaling structure and
fragmentation functions as in p-p collisions.

• Perhaps a little puzzling since this indicates that the energy
loss of the parton scales with its energy, if energy loss.
However, scaling is consistent with gluon-saturation.
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Conclusions, continued

• For (h+ + h-)/2 the difference in n between central and
peripheral collisions is significant: ∆n= 1.41±0.43 and is
consistent with the large proton and anti-proton
enhancement compared to charged pions, which appears to
violate xT scaling from 130 to 200 GeV:

» The range 0.04 < xT < 0.074 corresponds to
2.6<pT<4.8GeV/c at 130GeV and 4<pT<7GeV/c at 200GeV
But protons are enhanced for the same pT range
2<pT<4.5GeV/c for both 130 and 200 GeV
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PRL 88, 242301 (2002)

nucl-ex/0308006



M. J. Tannenbaum xT scaling CERN2003 47

Event Anisotropy-M. Kaneta
• Because of sensitive to collision geometry

– At low p
T 
(<2 GeV/c)

• Pressure gradient of early stage
• Hydrodynamical picture is established

– At high p
T 
(>2 GeV/c)

• Energy loss in dense medium (Jet Quenching)
• Partonic flow(?)

x

z

y

Here we focus on
ellipticity of azimuthal
momentum distribution, v2 
(second Fourier coefficient)
as physics message
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Method of π0 v2 Measurement
• Define reaction plane by charged multiplicity on Beam-Beam Counters
• π0 reconstruction from Electro-Magnetic Calorimeter (EMC)

– For each pT, azimuthal angle, centrality
• Combine both information

– Counting number of π0 as a function of

,....3,2,1  where =n
( ) 








Ψ−+= ∑

∞

=

]cos[ 21
  2

1

1

2

3

3

r
n

measured
n

TT

nv
dydpp

Nd

pd

dN
E φ

π

event anisotropy parameter measured

azimuthal angle of the particle
reaction plane angle

vnreal = vnmeasured/ (reaction plane resolution)n 

Note: the detail of reaction plane definition will be found in nucl-ex/0305013
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Some example plots from an analysis procedure
Invariant mass of γγ from same event and mixed event (classed by reaction plane, centrality, vertex position)

normalization range
for combinatorial B.G.
subtraction

After subtraction, there is 2nd component
of B.G. in pT<2GeV/c  region

shape assumed as
linear+asym. Gauss

count number of π0 in a range
after 2nd B.G. subtraction
(not used the fit function)

mγγ [GeV/c
2]

φ−ΦR [rad]

Fit function:
(average of π0 count) × ( 1 + 2  v2 cos[2(φ - ΦR)])
Green lines : deviation by error of v2

200GeV Au+Au

mγγ [GeV/c
2]
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Tooooooooooooo many histograms checked
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Tooooooooooooo many histograms checked

After combinatorial background subtraction

Example of invariant mass distributions for each pT, φ-ΦR in a centrality bin

Before combinatorial background subtraction
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v2 vs. pT vs. Centrality from 200GeV Au+Au
Statistical error is shown by error bar

Systematic error from π0 count method and reaction plane determination is shown by gray box

phenix preliminary
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v2 vs. pT vs. Centrality from 200GeV Au+Au
Statistical error is shown by error bar

Systematic error from π0 count method and reaction plane determination is shown by gray box

phenix preliminary}nucl-ex/0305013
phenix preliminary

The charged π and K v2 are shown only with statistical errors
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v2 vs. pT vs. Centrality from 200GeV Au+Au
Statistical error is shown by error bar

Systematic error from π0 count method and reaction plane determination is shown by gray box

• Charged π+K v2 consistent with π0 v2 in pT<4GeV/c

phenix preliminary}nucl-ex/0305013
phenix preliminary

The charged π and K v2 are shown only with statistical errors
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phenix preliminary

v2 vs. pT (Minimum Bias) from 200GeV Au+Au
• Identified particle v2 up to pT=10GeV/c

36.3×106 [events] = 5.3+0.5-0.4 [(µb)-1]
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phenix preliminary}nucl-ex/0305013
phenix preliminary

v2 vs. pT (Minimum Bias) from 200GeV Au+Au
• Identified particle v2 up to pT=10GeV/c

36.3×106 [events] = 5.3+0.5-0.4 [(µb)-1]
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phenix preliminary}nucl-ex/0305013
phenix preliminary

v2 vs. pT (Minimum Bias) from 200GeV Au+Au
• Identified particle v2 up to pT=10GeV/c

phenix preliminary

nucl-ex/0305013

36.3×106 [events] = 5.3+0.5-0.4 [(µb)-1]
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Run3-σπ0: Pi0 reconstruction
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π0 ALL from pp at 200 GeV-run3

 (GeV/c)Tp
0 1 2 3 4 5 6

L
L

A

-0.1

-0.05

0

0.05

0.1
=200 GeVs from pp at LL A0π

PHENIX Preliminary

Polarization scaling error
~30% is not included

-0.045±0.079

-0.009±0.036

-0.019±0.019

-0.046±0.025

(Background
subtracted)

0.38±0.24-0.023±0.074 (5%)4-5

0.094±0.092-0.002±0.033 (7%)3-4

-0.035±0.027-0.022±0.015 (17%)2-3

-0.006±0.014-0.028±0.012 (45%)1-2

(rbck)

pT
GeV/c

Polarization scaling error δP ~30%: is not included

• Analyzing power AN(100 GeV) ~ AN(22GeV) is assumed

• δP~30%: combined stat. and syst. error for AN(22GeV)

(AGS E950)

bck
LLA

+0π bck
LLA

0π
LLA




